Weak equivalence to Bernoulli shifts for some algebraic actions

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak isomorphisms between Bernoulli shifts

In this note, we prove that if G is a countable group that contains a nonabelian free subgroup then every pair of nontrivial Bernoulli shifts over G are weakly isomorphic.

متن کامل

The Equivalence of Some Bernoulli Convolutions to Lebesgue Measure

Since the 1930’s many authors have studied the distribution νλ of the random series Yλ = ∑±λn where the signs are chosen independently with probability (1/2, 1/2) and 0 < λ < 1. Solomyak recently proved that for almost every λ ∈ [ 1 2 , 1], the distribution νλ is absolutely continuous with respect to Lebesgue measure. In this paper we prove that νλ is even equivalent to Lebesgue measure for alm...

متن کامل

Stable orbit equivalence of Bernoulli shifts over free groups

Previous work showed that every pair of nontrivial Bernoulli shifts over a fixed free group are orbit equivalent. In this paper, we prove that if G 1 , G 2 are nonabelian free groups of finite rank then every nontrivial Bernoulli shift over G 1 is stably orbit equivalent to every nontrivial Bernoulli shift over G 2. This answers a question of S. Popa.

متن کامل

Positive Entropy Actions of Countable Groups Factor onto Bernoulli Shifts

We prove that if a free ergodic action of a countably infinite group has positive Rokhlin entropy (or, less generally, positive sofic entropy) then it factors onto all Bernoulli shifts of lesser or equal entropy. This extends to all countably infinite groups the well-known Sinai factor theorem from classical entropy theory. We also use our methods to deduce spectral properties of positive entro...

متن کامل

On Cocycle Actions of Non-commutative Bernoulli Shifts

In this paper we investigate the cocycle actions of non-commutative Bernoulli shifts for a countable discrete group G on the AFD II1-factor N = ⊗g∈GMn(C) or ⊗g∈GR, where R is the AFD II1-factor. We show that if G contains some non-amenable exact group, then the fixed point algebra of any its cocycle action is always atomic. We also give another proof of Popa’s cocycle vanishing theorem [15] in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2019

ISSN: 0002-9939,1088-6826

DOI: 10.1090/proc/14060